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The contour error in multi-axis free-form path-following tasks is inevitable due to the existence of factors such as
servo lag and external disturbances. Therefore, the control of the contour error is of great significance for im-
proving the precision of multi-axis motion systems. The estimation of the contour error is a premise for its
control, and the estimation accuracy should be ensured as high as possible. Existing contour-error estimation
methods can be mainly classified into four categories in terms of the first-order method, the second-order
method, the iterative method, and their combination methods. Different from them, this paper proposes a third-
order contour-error estimation algorithm, so as to improve the estimation accuracy without iterative compu-
tation. First, the desired contour is approximated as a third-order arc-length parameterized curve using the
Taylor's expansion. Then, the shortest distance from the actual motion position to the approximated contour is
solved analytically, thus obtaining the estimated contour error. The proposed estimation algorithm is suitable for
arbitrary free-form paths because the analytical equation of the desired contour are not required, but merely
kinematic parameters of multi-axis motion systems and the feedback position are utilized. Verification tests
illustrate that the proposed method can distinctly improve the estimation accuracy of the three-dimensional

contour error, when comparing with typical second-order methods.

1. Introduction

The following of arbitrary free-form path is one of the most im-
portant tasks for multi-axis motion systems such as CNC (Computer-
Numerical-Control) machine tools and multi degree-of-freedom ma-
nipulators. It is of great importance for these multi-axis motion systems
to keep well path-following accuracy, because the path-following ac-
curacy affects the motion precision of the end effector directly [1].
However, the contour error during path-following motion is inevitable
due to the existence of factors such as the single-axis servo lag, the
multi-axis dynamics mismatch, and the external disturbances [2].
Therefore, the control of the contour error in path-following tasks be-
comes significant.

The contour error is defined as the shortest distance between the
actual motion position and the desired path [3]. Doubtlessly, the value
of the contour error should be obtained so that the error can be con-
trolled. Although the precise contour errors of linear or circular paths
can be easily calculated, it is extremely difficult and time consuming, if
possible, to calculate the precise contour errors of arbitrary free-form
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paths, because the solving of nonlinear equations is required. As a
tradeoff, the approximated value of the contour error is commonly
adopted in real-time contour control. Therefore, the contour-error es-
timation plays a key role in contour controllers, and the estimation
precision directly affects the control performance [4].

A number of contour-error estimation algorithms have been pre-
sented in recent decades. Yeh and Hsu [3] proposed a tangential ap-
proximation method for free-form path contour-error estimation. In
their method, the contour error was calculated as the perpendicular
distance from the actual motion position to the tangential line of the
desired contour at the reference point. Cheng and Lee [5] estimated the
contour error as the distance from the actual motion position to the
secant line passing through the reference point and a tangential-error
backstepping point on the desired contour. Yao et al. [6] presented an
orthogonal global task coordinate frame (GTCF) for contour error cal-
culation using the analytical equation of the desired path, and it was
proofed that their estimation result was exact to the first-order ap-
proximation of the actual contour error. Therefore, all of the above
methods can be categorized as the first-order method.
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Furthermore, Yang et al. [7] and Chen et al. [8] approximated the
desired contour by its osculating circle at the reference position, and the
contour error was estimated using the distance from the actual position
to the approximated osculating circle. Zhu et al. [9] defined a point-to-
curve distance function, and estimated the contour error by applying
second-order Taylor expansion to the defined distance function. Song
et al. [10] estimated the contour error as the distance from actual
motion position to a fitted spatial circle passing through the normal
projection point on the desired contour of the actual position. There-
fore, these methods can be categorized as the second-order method.

Besides above first-order and second-order contour-error estimation
methods, there are also iterative algorithms proposed for further im-
provement of the estimation accuracy. Yang et al. [11] approximated
the desired path by line segments which were formed according to the
interpolation points from the interpolator, and the shortest distance
from the actual motion position to the line segments, i.e. the estimated
contour error, was computed iteratively. Ghaffari and Ulsoy [12] cal-
culated the contour error using a Newton iterative algorithm, and their
method can converge to the actual contour error except special cases
such as the sharp corner positions. Similarly, Wang et al. [13] presented
a Newton algorithm based iterative contour-error estimation method,
and it was proofed that their method can achieve second-order con-
vergence.

Note that although there exists other contour-error methods except
above three categories in terms of first-order, second-order, and itera-
tive methods, most of other methods can be seen as the generalization
or combination of above three categories of methods. For example,
Chen et al. [14] proposed several parameter based contour error esti-
mation algorithms by applying two-time first-order or second-order
approximations of the desired path; Uchiyama et al. [15] estimated the
contour error by using the osculating circle approximation iteratively;
Li et al. [16] found the nearest interpolation point from the actual
position to the desired contour iteratively, and then computed the
contour error by using second-order approximation of the desired path
at the found nearest point; Yang et al. [17] approximated the desired
path by an arc passing through three points which are searched by
iteration; Chen and Sun [18] presented a shifted Frenet frame based
contour-error estimation method by two-time first-order approxima-
tion.

From above analysis, it is concluded that most of existing contour-
error estimation methods can be categorized as following four cate-
gories in terms of the first-order, the second-order, the iterative
methods and their combination methods. Different from them, this
paper presents a third-order contour-error estimation algorithm, in
order to improve the estimation accuracy without iterative computa-
tion, so that it is suitable for real time contour control due to the high
computational efficiency. Additionally, the geometric information such
as the curvature of the desired path is not required during the proposed
third-order estimation procedure, which indicates that the presented
method is not only convenient to implementation, but also universal for
arbitrary free-form paths.

Following sections are organized as follows. The third-order ap-
proximation based contour-error estimation model is established in
Section 2. The solving process of the established estimation model is
presented in Section 3. After that, the performance of the presented
method is evaluated by comparison with existing methods in Section 4,
and finally, conclusions are summarized in Section 5.

2. Contour-error estimation model based on third-order
approximation

Most existing direct contour-error estimation methods use first-
order and second-order approximation. In this paper, a third-order es-
timation method is presented to improve the estimation accuracy
without iterative computation. The desired arbitrary free-form path to
be followed is approximated as a cubic parametric curve using third-
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order Taylor's expansion, and then, the cost function for calculation of
the distance from the actual motion position to the approximated cubic
contour is established.

Without loss of generality, the desired path to be followed of the
multi-axis motion systems is expressed as r(s), where s stands for the arc
length parameter. The arc length parameter corresponding to the re-
ference position is denoted as s, thus, the desired path neighboring the
reference position can be expanded at sq as
F(s) = P+ F'(50)8, + 377 (0) 8 + <1 (58} + 0(8) W
where & is defined as &, = s-s, and 0(57) represents the higher order
infinitesimal.

By ignoring 0(&?), the desired path neighboring the reference posi-
tion r(so) can thus be approximated as a cubic curve with respect to &
and sy, and the approximated contour is denoted as 7, (so, J;)

’ 1 ” 1 ,"
¥op (S0, Os) = 1 (s0) + ¥'(50)-6s + Er (80)-67 + g" (50)-8} )

The cost function f, is defined as

f;‘(SO: 5sv P) = rap(SOa 65) 4 (3)

Above, p is the actual motion position corresponding to the re-
ference motion position r(sy), and * stands for the Euclidean norm. As
can be seen from Eq. (3), the physical meaning of the cost function f is
the distance from the actual position to the approximated contour, and
the smallest value of . is hence the third-order estimated contour error.
For a given reference position and an actual position, the §; corre-
sponding to the smallest f, should be found to obtain the contour error,
which is equivalent to solve the following equation

Srap(50,95)
Ty Yap (SOa 6s) -p

9 (S0, 5 P) _ _
rap(SOa &) —p

09

(€]

Above, -, means the operator of inner product of two vectors. When
Ty (S0, &) — p # 0, Eq. (4) can be rewritten as

arap (SO’ 55)

3. > rap(so’ &)—p=0

(5)

Note that if r,,(so, &) — p = 0, the actual position p is on the ap-
proximated desired contour rq,, which means that the contour error
equals to zero. Therefore, although Eq. (4) cannot be rewritten as Eq.
(5) when ry, (s, &) — p = 0, the estimated contour error can be ob-
tained directly as zero in this case.

The §; corresponding to the nearest point on the approximated
contour from the actual position can be obtained by solving Eq. (5).
Differentiating Eq. (2) with respect to §;, one has

arap (SO, 53)

R ORI ORE gr"’(so)-af

(6)
Substitute Egs. (2) and (6) to Eq. (5), one obtains

Gr'(so)r" (s0) + 31" (50)2)8] + GF (s0), ¥ (50) + 57" (s0), 7 (50) — P)&}
+ (1" (50)* + 1" (50), 7 (50) = P)3s + F'(50), 7 (50) = p = 0
)
Obviously, Eq. (7) is a cubic equation with respect to §,. Once Eq.

(7) is solved, the estimated third-order contour error & can thus be
obtained as

&= rap(so’ 5s,f) 4 (8)

where J; ¢ is the desired solution of Eq. (7).

The coefficients of Eq. (7) must be obtained in order to solve it.
However, the analytical values of r'(sy), r”(so), and r" (so) are difficult
to get due to the fact that the arc length parameterization of a free-form
curve is not an easy task. In the following section, the solving methods
of the coefficients and Eq. (7) without using analytical expressions of



D.-N. Song, et al.

the desired path r(s) are provided, in order to make the presented
contour-error estimation method be suitable for arbitrary free-form
paths.

3. Solving of the third-order contour-error estimation model

This section solves the exact solution of the presented third-order
contour-error estimation model in Section 2 without using analytical
equation of the desired path. First, the values of r’' (so), r" (sp), and r" (o)
in the coefficients of Eq. (7) are computed according to the kinematic
parameters of the multi-axis motion system. Then, the third-order
equation is solved analytically to obtain the estimated contour error.

It should be noted that the path interpolation must be performed in
the interpolator before the contour control in multi-axis motion sys-
tems, so as to generate reference positions of all axes at each sampling
interval. Therefore, the kinematic parameters in terms of velocity, ac-
celeration, and jerk of each axis can be easily obtained from the in-
terpolator. Taking the three-axis CNC system as an instance, denote the
axial velocity, acceleration, and jerk vectors as v = [vy, v, v, a = [ay,
a,, a,1", and j = [j,, j, j.]", respectively, and they can be expressed as

_dr(s) _ dr(s)'g

= =r'(s)v
dt ds dt ©)vp ©
d’r(s) _ d’r(s) ,ds,, , dr(s) d% Y N ,
a= = (—)° + —=r S)v,+r(s)a
de? ds? (dt) ds dt? ©)vp + 1 ()3, (10)
. d3r(s) _ d3r(s) dsy3 d2r(s).d72S.E dr(s).d73s
J="w = @ +3¥a wa ds a3
= r”l(s)-vg + 3r'(s)-apv, + r’(s)-jp an

Above, v, a,, and j, are the first-order, second-order, and third-
order derivatives of the arc length s with respect to the time t, respec-
tively, i.e. the path velocity, acceleration, and jerk, respectively, and
they all can be obtained from the interpolator. According to Eq. (9), the
value of r'(sy) can be calculated using the current axial velocity v, and
the current path velocity v, o as

Vo

Vp,o

r'(so) =
12)
Substituting Eq. (12) to Eq. (10), the value of r”(sy) can thus be
obtained according to the current axial velocity v,, acceleration ao,
path velocity v, o and path acceleration a, o as
” Vp,o@o — ApoVo
r(so) = %

v

p,0 13)

Substituting Eqs. (12) and (13) to Eq. (11), the value of r" (sp) is
computed by the current axial velocity v,, axial acceleration a,, axial
jerk jo, path velocity v, o, path acceleration a, o, and path jerk j, o as

2 s 2 :
Voado = 3Vp,0ap,0@0 + 3a;0V0 = Vp,ojp0Vo

"",(So) =

Voo 14

Hence, the unknown variables in the coefficients of Eq. (7) are ob-
tained. Eq. (7) can thus be rewritten by substituting Egs. (12-14) to it as

0153 + 02632 + C363 +cy4 = 0 (15)
where the coefficients are
. 4\)3,0v0,j0 — 18vp0ap Vo, @p + 15a§,0v02 - 41)‘,,0jp,01102 + 3v§,0a02
L=
6V5 6
(16)
3"5,0"0, @ — V00,05 + V;,ojo, r(s) — p
— 3V0ap0@0, (S)) — p + (3(15,0 - Vp,ojp,o)vo, r(s) — p

C = 3

2050 17)
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Fig. 1. Comparison of the first-order, second-order, and the proposed third-
order contour-error estimation methods.

a
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-100
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Fig. 2. Desired contour geometries. (a) Impeller contour. (b) Butterfly contour.

-200

2
o= VpoVy + Vpo@o, T'(So) — P — apoVo, T (So) — p
37 3

Yp,0

(18)

Vo, 7'(S)) — p

Vp,0

Cy =
19

It can be seen from Egs. (16-19) that all of the coefficients of Eq.
(15) are known values. Therefore, the cubic Eq. (15) can be solved.
Note that although the coefficients are calculated according to the ki-
nematics parameters in terms of velocity, acceleration, and jerk, the
results do not change with the variation of the specific kinematics
parameters generated by different interpolator. This is because the
coefficients are related to the fixed ratio of the kinematics parameters
instead of the specific values of them, which is proofed below.

Denote the motion time of a piece of path s, under the path velocity
Vp1 as t;1. Once the path velocity v, is generated as v, », the motion
time of s, becomes  ,
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Fig. 3. Kinematic parameters of the impeller contour path.
Sp Vs1. Sp
L= —=(")—
5,2 Vs2 V51 (20)
Hence, the path acceleration a,; = tp—'ll will be changed to
'S,
v Vp2 V) v v v
apy= 22 = P22 _ (22 Pl _ (B2
L2 Vp1 bs2 V1 s 1 21)
Additionally, the path jerk j,, = ‘ZL': will be changed to
’ 'S,
. ap,2 ap,2 ap,l Vp,2 ap,l Vp,Z ap,l Vp,z .
Jpo = 22 = SRR (B2 S0l (B2 Tl (B2
ts,2 ap,l ts,Z vp,l ts,2 vp,l ts,l vp,l (22)

Denote the axial velocity, acceleration, and jerk corresponding to
Vp.1> Gp.1, and jp ;1 as vy, @y, and j;, respectively. According to Egs. (9-11),
once Vvp,1, a1, and jp; are changed to v, 5, a, 2, and jj, 5, respectively, v;,
a;, and j; will change as v,, a,, and j,, respectively, and they are
computed as

vp,2
vy = (ﬁ)‘vp,l

= (P22,
@ = (Vp,l) ap,1

Yp.2

. -
b =G 23)

Vp,1

By substituting Egs. (21-23) to Egs. (16-19), it is easy to find that the
coefficients c;, ca, c3, and ¢4 do not change when kinematics parameters
Vp,1> Op,15 jp,15 V1, @1, and j; are altered to v, 2, Gp,2, jip,2, V2, @2, and j,. This
indicates that the coefficients can reflect the invariable geometry of the
toolpath, although the kinematics may be different when using different
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Fig. 4. Kinematic parameters of the butterfly contour path.

interpolator.

In addition, it is seen from Eqs. (16-19) that the path velocity v, is
performed as the denominator during the coefficients calculation,
therefore, these equations become singularity once v, equals to zero
which will occur when encountering sharp corners. In this case, the
actual contour error will be zero because an instant stop is executed at
this kind of positions. Hence, the contour error is directly estimated as
zero when v, = 0. Unless v, = 0, there are three roots of an arbitrary
cubic equation. The three roots of Eq. (15) are calculated in this paper
according to the Shengjin's formula proposed by Fan [19] and utilized
by Liu [20], and the detail procedure is introduced below.

First, establish the discriminants

A= B? — 4AC 24
where

A =ci—3ccs

B = cc35 — 9ci¢4

C=c¢i— 300 (25)

If A =B =0, Eq. (15) has three equal real roots and they are

—c,
81= 050 =03 = —=
s, 1 S,2 s,3 301 (26)
In this case, the desired solution of Eq. (7) is
—c
8= —=
T 3 (27)

Otherwise, the solving method of Eq. (15) can be classified into
three cases according to the sign of the discriminants A.
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Fig. 5. Real contour error and its estimation deviations of different methods for
the impeller contour. (a) Real contour error. (b) Estimation deviation of Chen's
osculating method [8]. (c) Estimation deviation of Zhu's second-order method
[9]. (d) Estimation deviation of the proposed third-order method.

1) If A > 0, there are two complex conjugate roots and one real root
for Eq. (15), thus the single real root must be the desired solution
., and it is computed as

2
3¢, (28)

ey = Qe + 30, (P) 434, + 360,(PD))

as,f =

2) If A = 0, there are two equal real roots and another one different
real root for Eq. (15), and they are

65’1=_0_612+§
82 =03= 2
52 = 953 = o4 (29)

In this case, the root closest to zero is selected as the desired solution
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Fig. 6. Real contour error and its estimation deviations of different methods for
the butterfly contour. (a) Real contour error. (b) Estimation deviation of Chen's
osculating method [8]. (c) Estimation deviation of Zhu's second-order method
[9]. (d) Estimation deviation of the proposed third-order method.

Table 1
Performance comparison of contour-error estimation methods for the impeller

contour.

Estimation methods Deviation indexes (um)

MAX IAE RMS
Chen's osculating circular method [8] 14.6 5996.8 2.5
Zhu's second-order method [9] 15.7 5998.3 2.6
Proposed third-order method 4.0 1932.5 0.7
8 =8 i=10r2, 18, = min{l8,,1, 15,1} (30)

3) If A < 0, there are three different real roots for Eq. (15) and they
are
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Table 2
Performance comparison of contour-error estimation methods for the butterfly
contour.

Estimation methods Deviation indexes (um)

MAX IAE RMS
Chen's osculating circular method [8] 13.1 14016.1 1.5
Zhu's second-order method [9] 14.7 15186.4 1.5
Proposed third-order method 9.4 6615.3 0.6
Links® RT-Sim

software

(A
LI800200000000007
FIIP22222222222082

Fig. 7. Experimental setup for real-time capability tests.
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—cp— Z\Ecos%

53,1 = 31
—co+ x/Z(cosg + x/gsing)
823 = — 3, (€2D)]
in which
6 = arccos2Ac2 — 3B
24VA (32)

It is worth noting that there always exists A > 0 in this case, so that
the roots &1, &2, and J; ; are all real roots. This is proofed by contra-
diction method as follows.

Assume that there exists A < 0, i.e. ¢ — 3c;c; <0 when 4 < 0.
Denote the third-order function as f,(5,) = ¢18; + ¢,62 + ¢36; + ¢4, and
its first-order derivative can be obtained as f;'(5;) = 36162 + 2,8 + cs.
When c? — 3cic; < 0, there exists no real root for the function
£,/ (&) = 0. Therefore, f() >0 is satisfied when ¢; > 0 and
£/ (&) < 0 is satisfied when ¢; < 0. Thus, f;(§) monotonically in-
creases on (—oo, +00) when ¢; > 0 and monotonically decreases when
¢; < 0 on (—o0, +00), which indicates that there exists only one real
roots for the third-order function f;(d;) = 0. Hence, it can be deduced
that the discriminants A > 0 according to the Shengjin's theorem [19],
and this is contradict with the premise of the case A < 0. Therefore, we
have A > 0 when 4 < 0.

In this case, similarly, the root closest to zero is selected as the
desired solution J; ;.

8sf = s i =1or 20r 3, 18| = min{l& 1, 16,1, 1631} (33)

The estimated contour error £ can thus be calculated by substituting
the solution &, to Eq. (8). Fig. 1 shows the difference of the proposed
third-order contour-error estimation method with existing first-order
and second-order methods. It is acceptable that the third-order ap-
proximated contour of the desired curved path is more precise than the
lower-order approximated ones, therefore, the contour-error estimation
accuracy can be improved effectively. When comparing with iterative
methods, the estimation accuracy of the proposed method may be
lower, but the advantage is that the iterative computation which con-
sumes uncertain calculation time is not required in the proposed third-
order contour-error estimation algorithm.

The integral procedure of the proposed third-order contour-error
estimation is summarized as follows. First, read the reference position
and kinematic parameters in terms of the axial and path velocities,
accelerations, and jerks from the interpolator, and read the actual
motion position from the feedback sensors of the multi-axis motion
system. Second, calculate the coefficients ¢y, ¢», c3, and c4 according to
Egs. (16)-(19), respectively. Third, solve the solution & according to
Egs. 27-33. Fourth, calculate the estimated contour error £ by sub-
stituting the solved J;sto Eq. (8). As can be seen from above procedure,
the analytical formula of the desired path is not required, which in-
dicates that the presented method can be used for any arbitrary free-
form path.

4. Verification tests

This section conducts verification tests so as to evaluate the per-
formance of the presented contour-error estimation method. Note that
the contour error belongs to motion error who has no relationship with
the dimensional accuracy of the multi-axis motion system, and the
contour error estimation is a pure mathematical computation issue once
the desired contour and actual position are obtained, therefore, a real
motion system is not necessary for verification tests. A three-axis mo-
tion system model is established in Matlab/Simulink environment, so as
to generate the actual motion positions corresponding to the desired
contour. The close-loop transfer functions of the three axes are set as

37
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Two three-dimensional desired contours in terms of an impeller
contour and a butterfly contour, expressed by NURBS (non-uniform
rational B-spline), are adopted for the verification tests, and their
geometries are shown in Fig. 2. The control points of the two spline
contours are shown in Fig. 2, and the rest of NURBS parameters of the
impeller contour shown in Fig. 2(a) are:

Order: 5;

Knot vector: [0, 0, 0, 0, 0, 0.216, 0.280, 0.323, 0.359, 0.418, 0.485,
0.549, 0.613, 0.656, 0.692, 0.751, 0.818, 0.883, 0.947, 1, 1, 1, 1, 1];

Weights: [1, ..., 1].

The rest of NURBS parameters of the butterfly contour shown in
Fig. 2(b) are:

Order: 4;

Knot vector: [0, 0, 0, 0, 0.0083, 0.015, 0.0361, 0.08550, 0.1293,
0.1509, 0.1931, 0.2273, 0.2435, 0.2561, 0.2692, 0.2889, 0.317,
0.3316, 0.3482, 0.3553, 0.3649, 0.3837, 0.4005, 0.4269, 0.451, 0.466,
0.4891, 0.5, 0.5109, 0.534, 0.54890, 0.57310, 0.5994, 0.6163, 0.6351,
0.6447, 0.6518, 0.6683, 0.683, 0.7111, 0.7307, 0.7439, 0.7565,
0.77290, 0.8069, 0.8491, 0.8707, 0.9145, 0.9639, 0.985, 0.9917, 1, 1,
1,11

Weights: [1,1,1,1.2,1,1,1,1,1,1, 1, 2,
i,1,1,1,1,1,1,1,1,1,1,1.1,1, 3,5, 1, 1,
1, 11.

As can be seen, the two testing contours are all curved paths with
both large curvature and large curvature variation. A NURBS inter-
polator [21] is employed to generate the reference interpolation point
coordinates of the desired contours at each sampling interval. The
generated interpolation point coordinates are utilized as input reference
commands of the established three-axis motion system model. By
sampling of the outputs of the motion system, actual motion positions
corresponding to the desired contours can be obtained. Thus the desired
and actual contours are all known. The maximum feedrate of the im-
peller contour path is set as 50 mm/s, while that for the butterfly
contour path is 40 mm/s. The kinematic parameters in terms of the
axial velocity, acceleration, and jerk that should be used by the pro-
posed contour-error estimation method are obtained from the inter-
polator, and they are shown in Fig. 3 and Fig. 4.

Two typical second-order contour-error estimation methods, i.e.
Chen's osculating approximation method [8] and Zhu's second-order
method [9], are token for comparison with the presented third-order
method. First, the real contour errors of the two testing contours are
computed according to the mathematical definition of the contour
error. Then, the above three kinds of methods are utilized to compute
the estimated contour errors respectively. The real contour errors of the
impeller contour and their deviations with the estimated contour errors
of different methods are illustrated in Fig. 5. Similarly, the real contour
errors and estimation deviations of the more complicated butterfly
contour are illustrated in Fig. 6.

The testing results of the impeller and butterfly contours are further
compared in Table 1 and Table 2, respectively. In Tables 1 and 2, the
index MAX means the maximum estimation deviation; the index IAE
means the absolute integral value of the estimation deviations; the
index RMS means the root mean square value of the estimation de-
viations. It can be concluded from Figs. 5 and 6 and Tables 1-2 that the
estimation deviations of Chen's and Zhu's methods are nearly the same
because they are all second-order methods, and the proposed third-
order estimation method can distinctly improve the estimation accu-
racy. Note that the contour-error estimation accuracy can be further
improved if the first-order and second-order methods in existing
iterative or multi-time contour-error estimation methods, such as the
methods in Ref. [14], are replaced by the proposed third-order esti-
mation method.

In order to further evaluate the real-time capability of the proposed
third-order contour-error estimation method, above estimation proce-
dures are executed in a real-time rapid-control-prototype controller RT-
Cube shown in Fig. 7. The RT-Cube controller is produced by Beijing

1
2,
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Links® Corporation, and it is embedded with a 866 MHz dual-core ARM
Cortex-A9 processor. By using the affiliated Links® RT-Sim software, the
code of the proposed estimation model is downloaded into the RT-Cube
controller, and the computation time of the estimation model in each
sampling interval is monitored and saved into the host PC through the
RT-Sim software. The computation time for estimation of the contour
errors of the impeller and butterfly contours is illustrated in Fig. 8. It is
seen from Fig. 8 that the maximum contour-error estimation time of the
two tests are all shorter than 30us, and this is much less than the
commonly used interpolation period and sampling interval of multi-axis
motion systems which are always larger than 1 ms. As a result, it can be
concluded that the proposed third-order contour-error estimation
method processes not only high estimation accuracy, but also high
computational efficiency.

5. Conclusion

In this paper, a third-order contour-error estimation method is
presented for accurate estimation of the contour error of arbitrary free-
form paths in multi-axis contour-following tasks. The desired contour is
approximated by an arc length parameterized cubic curve using third-
order Taylor's expansion first, and then, the analytical solving method
of the distance from the actual motion position to the cubic curve is
provided. The whole procedure uses merely the feedback positions and
the axial kinematic parameters of the motion systems which can be
obtained easily from the interpolator. The analytical expression of the
desired contour and the axial amounts and configurations are not re-
quired, which indicates that the presented method can be used for ar-
bitrary free-form path and most serial multi-axis motion systems.
Verification tests are conducted to evaluate the performance of the
presented approach. It is seen from the test results that the estimation
deviation of the three-dimensional contour error using the proposed
third-order estimation method is less than 10 pm which is much smaller
than that using the typical second-order methods, and the computation
time of the estimation method is shorter than 30 ps, which indicates a
high computational efficiency. It is also noted that the estimation ac-
curacy can be further improved if the proposed third-order contour-
error estimation algorithm is combined with iterative computation
methods. Contribution of this study is significant for improvement of
the contour-error estimation precision in real time, thus enhancing the
contour control performance. In future works, the proposed contour-
error estimation method will be employed for design of novel contour
controllers for multi-axis motion systems.
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